
www.umbc.edu

CMSC201
 Computer Science I for Majors

Lecture 04 – Expressions

Prof. Katherine Gibson

Prof. Jeremy Dixon

Based on slides by Shawn Lupoli and Max Morawski at UMBC

www.umbc.edu

Last Class We Covered

• Variables

– Rules for naming

– Different types

– How to use them

• Printing output to the screen

• Getting input from the user

– Mad Libs

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To learn more about expressions

• To learn Python’s operators

– Including mod and integer division

• To understand the order of operations

• To learn more about types

– How to cast to a type

• To understand the use of constants

4

www.umbc.edu

Expressions

• Expressions are code that produces or
calculates new data and data values

• Allow us to program interesting things

• Always on the right hand side of the
assignment operator

5

www.umbc.edu









Pop Quiz!

• Which of the following examples are correct?

1. 500 = numStudents

2. numStudents = 500

3. numCookies * cookiePrice = total

4. mpg = miles_driven / gallons_used

5. "Hello World!" = message

6. _CMSC201_doge_ = "Very learning"

7. 60 * hours = days * 24 * 60

6

www.umbc.edu

Python’s Operators

www.umbc.edu

Python Basic Operators

• Operators are the constructs which can
manipulate the value of operands

• Consider the expression:

 num = 4 + 5

• Here, num is the operand and + is the operator

8

operand operator

www.umbc.edu

Types of Operators in Python

• Arithmetic Operators

• Comparison (Relational) Operators

• Assignment Operators

• Logical Operators

• Bitwise Operators

• Membership Operators

• Identity Operators

9

focus of
today’s lecture

www.umbc.edu

Operators in Python

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

// Integer division

% Modulo (remainder)

** Exponentiation

10

www.umbc.edu

Operators – Addition & Subtraction

• “Lowest” priority in the order of operations

–Can only change this with parentheses

• Function as they normally do

• Examples:

1. cash = cash - bills

2. (5 + 7) / 2

3. (((2 + 4) * 5) / (9 - 6))

11

www.umbc.edu

Operators – Multiplication & Division

• Higher priority in the order of operations
than addition and subtraction

• Function as they normally do

• Examples:

1. tax = subtotal * 0.06

2. area = PI * (radius * radius)

3. totalDays = hours / 24

12

www.umbc.edu

Operators – Integer Division

• Reminder: integers (or ints) are whole numbers

–What do you think integer division is?

• Remember division in grade school?

• Integer division is

– Division done without decimals

– And the remainder is discarded

13

www.umbc.edu

Examples: Integer Division

• Integer division uses double slashes (//)

• Examples:

1. 7 / 5 =

2. 7 // 5 =

3. 2 / 8 =

4. 2 // 8 =

5. 4 // 17 // 5 =

14

1.4

1

0.25

0

 0

evaluate from left to right

www.umbc.edu

Operators – Modulo

• Also called “modulo,” “modulus,” or “mod”

• Example: 17 % 5 = 2

– What do you think mod does?

• Remember division in grade school?

• Modulo gives you the remainder

– The “opposite” of integer division

15

www.umbc.edu

Examples: Mod

• Mod uses the percent sign (%)

• Examples:

1. 7 % 5 =

2. 5 % 9 =

3. 17 % 6 =

4. 22 % 4 =

5. 48692451673 % 2 =

16

2

5

5

2

 1

www.umbc.edu

Modulo Answers

• Result of a modulo operation will always be:

– Positive

– No less than 0

– No more than the divisor minus 1

• Examples:
1. 8 % 3 =

2. 21 % 3 =

3. 13 % 3 =

17

2

0

1 no less than zero

no more than the
divisor minus 1

www.umbc.edu

Operators – Exponentiation

• “Exponentiation” is just another word for
raising one number to the power of another

• Examples:

1. binary8 = 2 ** 8

2. squareArea = length ** 2

3. cubeVolume = length ** 3

4. squareRoot = num ** (0.5)

18

www.umbc.edu

Order of Operations

• Expressions are evaluated from left to right

• What can change this ordering?

– Parentheses!

19

in what direction?

Operator(s) Priority

** highest

/ * // %

+ - lowest

www.umbc.edu

Types in Python

www.umbc.edu

Variable Types

• There are many different kinds of variables!

–Numbers

• Whole numbers (Integers)

• Decimals (Floats)

–Booleans (True and False)

– Strings (collections of characters)

21

www.umbc.edu

Finding a Variable’s Type

• To find what type a variable is, use type()

• Example:
>>> a = 3.0

>>> type(a)

<class 'float'>

22

>>> b = "moo"

>>> type(b)

<class 'str'>

www.umbc.edu

Quick Note: Python Interpreter

• Sometimes in class and the slides, you’ll see
use of Python’s “interactive” interpreter

– Evaluates each line of code as it’s typed in

>>> print("Hello")

Hello

>>> 4 + 7

11

>>>

23

>>> is where the
user types their code lines without a “>>>”

are Python’s response

www.umbc.edu

Division: Floats and Integers

• Floats (decimals) and integers (whole numbers)
behave very differently in Python

– And in many other programming languages

• Biggest difference is with how division works

– Python 3 automatically performs decimal division

• Have to explicitly call integer division

– Floats also automatically perform decimal division

24

www.umbc.edu

Division Examples

• What do the following expressions evaluate to?

1. 4 / 3

2. 4 // 3

3. 4 // 3.0

4. 8 / 3

5. 8 / 2

6. 5 / 7

7. 5 // 7

25

= 1.3333333333333333

= 1

= 1.0

= 2.6666666666666667

= 4.0

= 0.7142857142857143

= 0

www.umbc.edu

Floating Point Errors

• In base 10, some numbers are approximated:

– 0.66666666666666666666666667…

– 3.14159265358979323846264338328…

• The same is true for base 2

– 0.00011001100110011001100… (0.1 in base 10)

• This leads to rounding errors with floats

– General rule: Don’t compare floats for equality
after you’ve done division on them!

26

www.umbc.edu

Casting to a Type

• We can change a variable from one type to
another using casting

• Example:
>>> e = 2.718

>>> int(e)

2

>>> str(e)

'2.718'

27

type you want to cast to,
then the variable to cast
“change e to an integer”

www.umbc.edu

Casting to a Type: Assignment

• Casting alone doesn’t change a variable’s type
>>> courseNum = "201"

>>> int(courseNum)

201

>>> type(courseNum)

<class 'str'>

• To make an actual change, you need to
“save” it with the assignment operator

28

cast courseNum as an int

type is still a string (!?)

www.umbc.edu

Casting to a Type: Assignment

• Use the assignment operator (=) to actually
change the variable’s type

>>> courseNum = "201"

>>> type(courseNum)

<class 'str'>

>>> courseNum = int(courseNum)

>>> type(courseNum)

<class 'int'>

29

this is what actually causes
the variable’s type to change

www.umbc.edu

Constants

www.umbc.edu

What are Constants?

• Constants are values that are not generated
by the user or by the code

–But are used a great deal in the program

• Constants should be ALL CAPS with a “_”
(underscore) to separate the words

–Coding standards

 31

www.umbc.edu

Using Constants

• Calculating the total for a shopping order
MD_TAX = 0.06

subtotal = input("Enter subtotal:")

tax = subtotal * MD_TAX

total = tax + subtotal

print("Your total is:", total)

32

easy to update if tax rate changes

we know exactly what
this number is for

www.umbc.edu

“Magic” Numbers

• “Magic” numbers are numbers used directly in
the code – should be replaced with constants

• Examples:

– Mathematical numbers (pi, e, etc.)

– Program properties (window size, min and max)

– Important values (tax rate, maximum number of
students, credits required to graduate, etc.)

33

www.umbc.edu

“Magic” Numbers Example

• You’re looking at the code for a virtual casino

– You see the number 21

– What does it mean?

• Blackjack? Drinking age? VIP room numbers?

• Constants make it easy to update values – why?

– Don’t have to figure out which “21”s to change

34

if (value < 21)

if (customerAge < DRINKING_AGE)





www.umbc.edu

“Magic” Everything

• Can also have “magic” characters or strings

– Use constants to prevent any “magic” values

• For example, a blackjack program that uses
the chars “H” for hit, and “S” for stay

– Which of these options is easier to understand?

– Which is easier to update if needed?

35

if (userChoice == "H"): 
if (userChoice == HIT): 

www.umbc.edu

Are Constants Really Constant?

• In some languages (like C, C++, and Java), you
can create variables that CANNOT be changed

• This is not possible with Python variables

–Part of why coding standards are so important

– If you see code that changes the value of a
variable called MAX_ENROLL, you know
that’s a constant, and shouldn’t be changed

36

www.umbc.edu

Quick Note: Version of Python

• Before you run any Python code, you need to
tell GL you want to use Python 3 instead:
scl enable python33 bash

• You can double-check which version is running
with the command python –v

– It will print out a bunch of text, but near the
bottom you should see “Python 3.3.2”

37

www.umbc.edu

Version of Python

• After typing “python -v”

38

www.umbc.edu

Announcements

• Your Lab 1 is happening this week!

– First graded lab; attend your assigned section

• Homework 2 will be out Monday night

– Due by Monday (Feb 15th) at 8:59:59 PM

• Both of these assignments are on Blackboard

– Complete Academic Integrity Quiz to see HW2

39

www.umbc.edu

Practice Problems

• Write a program that gets a price from the user,
and uses arithmetic operators to calculate the
dollars and pennies (e.g., 7.55 = $7, 55¢)

– Update the program to check if the value is
negative, and print out an error message if it is

• Explain why you would use constants in a
program. Give an illustrative example.

• Write a program that calculates the volume of a
cylinder. (Try to write it using exponentiation!)

40

